Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones

نویسندگان

  • Muhammad Malik
  • Arkady Mustaev
  • Heidi A. Schwanz
  • Gan Luan
  • Nirali Shah
  • Lisa M. Oppegard
  • Ernane C. de Souza
  • Hiroshi Hiasa
  • Xilin Zhao
  • Robert J. Kerns
  • Karl Drlica
چکیده

Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis.

Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. ...

متن کامل

Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase.

Mycobacterium tuberculosis is a significant source of global morbidity and mortality. Moxifloxacin and other fluoroquinolones are important therapeutic agents for the treatment of tuberculosis, particularly multidrug-resistant infections. To guide the development of new quinolone-based agents, it is critical to understand the basis of drug action against M. tuberculosis gyrase and how mutations...

متن کامل

Mechanisms of clinical resistance to fluoroquinolones in Staphylococcus aureus.

Mechanisms of Staphylococcus aureus resistance to fluoroquinolones were characterized. Subunit A and B proteins of DNA gyrase were partially purified from fluoroquinolone-susceptible strain SA113 and resistant isolate MS16405, which was 250- to 1,000-fold less susceptible to fluoroquinolones such as ciprofloxacin, norfloxacin, ofloxacin, temafloxacin, and sparfloxacin than SA113 was. The superc...

متن کامل

Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase.

A paucity of novel acting antibacterials is in development to treat the rising threat of antimicrobial resistance, particularly in Gram-negative hospital pathogens, which has led to renewed efforts in antibiotic drug discovery. Fluoroquinolones are broad-spectrum antibacterials that target DNA gyrase by stabilizing DNA-cleavage complexes, but their clinical utility has been compromised by resis...

متن کامل

Plasmid-Mediated Quinolone Resistance; Interactions between Human, Animal, and Environmental Ecologies

Resistance to quinolones and fluoroquinolones is being increasingly reported among human but also veterinary isolates during the last two to three decades, very likely as a consequence of the large clinical usage of those antibiotics. Even if the principle mechanisms of resistance to quinolones are chromosome-encoded, due to modifications of molecular targets (DNA gyrase and topoisomerase IV), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016